Abstract
Recent developments in hydrogen energy devices have furthered the research on sustainable hydrogen production methods. Among these, the water splitting process has been considered a promising hydrogen production method, particularly, in alkaline media. The lack of information on the reaction active sites under the conditions of the oxygen evolution reaction (OER) hinders establishing guidelines for catalyst development. In the case of powder catalysts, many operando techniques also measure bulk information, and therefore, extracting information on the reaction active sites is challenging. Accordingly, film electrodes were used in this study, and the electrochemical performance and reaction kinetics of perovskite-type La1–xSrxCoO3−δ films as OER catalysts synthesized by pulsed laser deposition were investigated. By combining ex situ X-ray absorption spectroscopy (XAS) and operando total-reflection fluorescence X-ray absorption spectroscopy (TRF-XAS), we succeeded in observing a significant oxidation state change on the surface of La0.6Sr0.4CoO3−δ, which indicated that the active surface sites were formed upon applying the OER potential. This surface reconstruction resulted in numerous active sites at the reaction interface, thereby enhancing the OER activity. This study provides definitive evidence for the surface reconstruction of OER catalysts, which enhances the fundamental understanding of OER catalyst behaviors, and can inspire the design of active OER catalysts by suitable surface modulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.