Abstract

The aim of this study is that of presenting a new diagnostic and prognostic method aimed at automatically detecting deviations from the expected degradation dynamics of the batteries due to changes in the operating conditions, or, possibly, anomalous behaviors, and predicting their remaining useful life (RUL) in terms of their state-of-life (SOL), without needing to derive any complex physics-based models and/or gather huge amounts of experimental data to cover all possible operative/fault conditions. The proposed method in fact exploits the real time framework offered by particle filtering and resorts to neural networks in order to build a suitable parametric measurement equation, which provides the algorithm with the capability of automatically adjusting to different battery’s dynamic behaviors. The results of this study demonstrate the satisfactory performances of the algorithm in terms of adaptability and diagnostic sensibility, with reference to suitably identified case studies based on actual Lithium-Ion battery capacity data taken from the prognostics data repository of the NASA Ames Research Center database and of the CALCE Battery Group.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.