Abstract
Effective thermal management and accurate state of health (SOH) estimation of lithium-ion batteries is crucial for ensuring their safety, reliability, and longevity. This study presents three innovative physics-informed machine learning-based SOH estimation techniques trained and demonstrated using experimental temperature data. Temperature distribution measurements were obtained using optical frequency domain reflectometry with optical fibers embedded in a cylindrical lithium-ion battery cell under various SOH. One of the trained model accurately predicted the SOH of a cell within 2% with only a 10-minute measurement. This technique also enables the estimation of SOH for individual cells connected in series or parallel within a battery module or pack simultaneously, thereby reducing the overall SOH estimation uncertainty without the need for disassembly. Furthermore, this not only highlights the necessity of precise thermal management in maintaining battery health but also offers a practical and efficient solution for real-time SOH monitoring in battery systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.