Abstract

The reliability and safety of lithium-ion batteries (LIBs) are key issues in battery applications. Accurate prediction of the state-of-health (SOH) of LIBs can reduce or even avoid battery-related accidents. In this paper, a new back-propagation neural network (BPNN) is proposed to predict the SOH of LIBs. The BPNN uses as input the LIB voltage, current and temperature, as well as the charging time, since it is strongly correlated with the SOH. The number of hidden layer nodes is adaptively set based on the training data in order to improve the generalization capability of the BPNN. The effectiveness and robustness of the proposed scheme is verified using four distinct battery datasets and different training data. Experimental results show that the new BPNN is able to accurately predict the SOH of LIBs, revealing superiority when compared to other alternatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.