Abstract
Battery state of health (SOH) estimating is essential for the safety and preservation of electric vehicles. The degradation mechanism of batteries under different aging conditions has attracted considerable attention in SOH prediction. In this article, the discharge voltage curve early in the cycle is considered to be strongly characteristic during cell aging. Therefore, the battery aging state can be quantitatively characterized by an incremental capacity analysis (ICA) of the voltage distribution. Due to the interference of vibration noise of the test platform, the discrete wavelet transform (DWT) methods are accustomed to soften the premier incremental capacity curves in different hierarchical decompositions. By analyzing the battery aging mechanism, the peak of the curve and its corresponding voltage are used in the characterization of capacity decay by grey relation analysis (GRA) and to optimize the input of the deep learning model, and finally, the double-layer long short-term memory network (LSTM) model is used to train the data. The results demonstrate that the proposed model can predict the SOH of a single battery cycle using only small batch data and the relative error is less than 2%. Further, by freezing the LSTM layer for transfer learning, it can be used for battery health estimation in different loading modes. The results of training and verification show that this method has high accuracy and reliability in SOH estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.