Abstract

Accurate and robust state of charge (SOC) estimation of lithium-ion batteries is very important to prolong battery life and prevent catastrophic failures. However, the accuracy of SOC estimation is seriously affected by unknown noise, uncertain interference and temperature. In this article, a novel model fusion method is presented to achieve precise SOC estimation in the case of non-Gaussian noise and outliers. A state-space model of battery system is first developed to conduct SOC estimate. Then, a novel robust kernel Takagi–Sugeno fuzzy method to minimize the mean and variance of model error is developed to characterize the electrical performance of battery. This modeling strategy uses local nonlinear modeling mechanism, which the nonlinear relationship between data can be well represented, thus it can obtain a superior modeling performance. Finally, a multi-innovation unscented Kalman filter (UKF) algorithm considering the historical state information is designed to incorporate with the robust fuzzy model to filter out the noise in the observation and update the SOC estimation. Additional stability analysis shows the convergence of the proposed multi-innovation UKF algorithm. Experiments and verifications show that the presented estimation architecture is effective and has better modeling ability compared with several common methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.