Abstract

Estimation of the state-of-charge (SOC) of lithium-ion batteries (LIBs) is fundamental to assure the normal operation of both the battery and battery-powered equipment. This paper derives a new SOC estimation method (CNN-UKF) that combines a convolutional neural network (CNN) and an unscented Kalman filter (UKF). The measured voltage, current and temperature of the LIB are the input of the CNN. The output of the hidden layer feeds the linear layer, whose output corresponds to an initial network-based SOC estimation. The output of the CNN is then used as the input of a UKF, which, using self-correction, yields high-precision SOC estimation results. This method does not require tuning of network hyperparameters, reducing the dependence of the network on hyperparameter adjustment and improving the efficiency of the network. The experimental results show that this method has higher accuracy and robustness compared to SOC estimation methods based on CNN and other advanced methods found in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call