Abstract

A novel method that uses composite multi-dimensional features data to estimate the state of charge (SOC) of a battery is presented to address the shortcomings of using single-dimensional feature data. Two types of data, the terminal voltage and the terminal current, which can be obtained directly by measuring, are selected as low-dimensional feature data. The open-circuit voltage (OCV), as high-dimensional feature data, cannot be directly measured, and can be used to estimate the SOC by the OCV-SOC method. Thus, in this study, the second-order RC equivalent model of a battery is used and the OCV is identified online by the forgetting factor recursive least-squares algorithm. The proposed method is implemented by first using a feed-forward neural network, followed by a time-series neural network. The dynamic stress test and urban dynamometer driving schedule discharging profiles are applied to train and test the two neural networks. The experimental results show that the proposed method can estimate the SOC more accurately than neural networks using only single-dimensional feature data. Moreover, the time series neural network can overcome the shortcomings of traditional estimation methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.