Abstract

Accurate State of Charge (SOC) estimation is crucial to ensure the safe and reliable operation of Li-ion batteries, which are increasingly being used in Electric Vehicles (EV), grid-tied load-leveling applications as well as manned and unmanned aerial vehicles to name a few applications. In this paper, a novel approach using Deep Feedforward Neural Networks (DNN) is used for battery SOC estimation where battery measurements are directly mapped to SOC. Training data is generated in the lab by applying drive cycle loads at various ambient temperatures to a Li-ion battery so that the battery is exposed to variable dynamics. The DNN's ability to encode the dependencies in time into the network weights and in the process provide accurate estimates of SOC is presented. Moreover, data recorded at ambient temperatures lying between −20 °C and 25 °C are fed into the DNN during training. Once trained, this single DNN is able to estimate SOC at various ambient temperature conditions. The DNN is validated over many different datasets and achieves a Mean Absolute Error (MAE) of 1.10% over a 25 °C dataset as well as an MAE of 2.17% over a −20 °C dataset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.