Abstract

The standard state-dependent Heisenberg-Robertson uncertainly-relation lower bound fails to capture the quintessential incompatibility of observables as the bound can be zero for some states. To remedy this problem, we establish a class of tight (i.e., inequalities are saturated)variance-based sum-uncertainty relations derived from the Lie algebraic properties of observables and show that our lower bounds depend only on the irreducible representation assumed carried by the Hilbert space of state of the system. We illustrate our result for the cases of the Weyl-Heisenberg algebra, special unitary algebras up to rank 4, and any semisimple compact algebra. We also prove the usefulness of our results by extending a known variance-based entanglement detection criterion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.