Abstract

According to the spectrophotometric data, the lithium 1-(2-methoxyphenyl)-3,3-diphenylpropyne derivative in diethyl ether exists as contact ion pairs, while in THF, according to the spectrophotometric and13C NMR data, solvent-separated ion pairs are predominantly formed. According to the13C NMR data, the carbanion in the solventseparated ion pairs has a structure close to the propargylic type. The regioselectivity of reactions of the lithium derivative with ethyl halides in diethyl ether, THF, and hexamethyphosphoramide, with benzyl chloride in the first two solvents, and with methanol in THF were studied. The protonation with methanol proceeds exclusively at the allenylic center (C-1) while the ethylation and especially benzylation proceed predominantly at the propargylic center (C-3). The selectivity of ethylation of the propargylic center of both solvent-separated ion pairs in THF and contact ion pairs in diethyl ether increases as the hardness of the ethylating agent increases, and in the case of the same ethyl halide, the selectivity increases from the solvent-separated ion pairs to the contact ion pairs. The spectral data obtained and the data on changes in the regioselectivity do not allow one to believe that the contact ion pairs of the lithium derivative in ether exhibit the intramolecular coordination of the lithium cation to the methoxy group, which might lead to the allenylic structure of contact ion pairs of this derivative.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call