Abstract

Battery charging is a greater challenge in the emerging electric vehicle domain. A newer multistage constant-current (MSCC) charging technique encompassing state-flow control tool-based design is implemented for charging the battery of an electric two-wheeler. MSCC method allows for faster charging and reduced battery degradation per charge. The designed controller incorporates line current power factor correction, thereby limiting the total harmonic distortion (THD) in line current and reactive power. The control strategy for battery charging has been developed using the state flow chart approach for implementing MSCC. The model has been formulated and implemented in MATLAB/Simulink. The proposed control monitors the state-of-charge (SOC) of the battery, age, and thermal behavior due to the charging strategy. The results show that the proposed charging technique with a state flow control approach gives effective and efficient output with reduced THD. Simulation results disclose that the desired parameters are controllable, stable, and effective within the operational limits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.