Abstract

This article explores a new filtering problem for the class of delayed discrete-time complex-valued neural networks (CVNNs) via state-feedback control design. The novelty of this article comes from the consideration of the newly developed complex-valued reciprocal convex matrix inequality as well as the complex-valued Jensen-based summation inequalities (JSIs). By employing an appropriate Lyapunov-Krasovskii functional (LKF) and by using newly proposed complex-valued inequalities, attention is concentrated on the design of a state-feedback filter such that the associated filtering error system is asymptotically stable with prescribed filter and control gain matrices. The proposed theoretical results are presented in terms of complex-valued linear matrix inequalities (LMIs) that can be solved numerically by using the YALMIP toolbox in MATLAB software. Additionally, one numerical example is given to confirm the validity of the resulting sufficient conditions with the availability of the suitable control and filter design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.