Abstract

The paper treats the question of state variable feedback control of prototypical aeroelastic wing sections with structural nonlinearity. This type of model has been traditionally used for the theoretical as well as experimental analyses of two-dimensional aeroelastic behavior. The chosen dynamic model describes the nonlinear plunge and pitch motion of a wing. A single control surface is used for the purpose of control. A control law is designed based on the state-dependent Riccati equation technique. Unlike feedback linearizing control systems reported in literature, this approach is applicable to minimum as well as nonminimum phase aeroelastic models. The closed-loop system is asymptotically stable. Simulation results are presented which show that in the closed-loop system, flutter suppression is accomplished.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call