Abstract
SummaryIn this paper, the state estimation problem is investigated for a class of discrete‐time stochastic systems in simultaneous presence of three network‐induced phenomena, namely, fading measurements, randomly varying nonlinearities and probabilistic distributed delays. The channel fading is characterized by the ℓth‐order Rice fading model whose coefficients are mutually independent random variables with given probability density functions. Two sequences of random variables obeying the Bernoulli distribution are utilized to govern the randomly varying nonlinearities and probabilistic distributed delays. The purpose of the problem addressed is to design an state estimator such that the dynamics of the estimation errors is stochastically stable and the prespecified disturbance rejection attenuation level is guaranteed. Through intensive stochastic analysis, sufficient conditions are established under which the addressed state estimation problem is recast as a convex optimization one that can be solved via the semi‐definite program method. Finally, a simulation example is provided to show the usefulness of the proposed state estimation scheme. Copyright © 2014 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Robust and Nonlinear Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.