Abstract

State estimation over wireless sensor networks (WSNs) plays an important role for the ubiquitous monitoring in industrial cyber-physical systems (ICPSs). However, the unreliable wireless channels lead to the transmitted measurements arriving at the remote estimator intermittently, which will deteriorate the estimation performance. Question of how to improve the transmission reliability in the hostile industrial environment to guarantee the pre-defined estimation performance for ICPSs is largely unexplored. This paper is concerned with a redundant transmission strategy to meet the reliability requirement for state estimation. This strategy incorporates the ISM channels with the opportunistically harvested channels to provide adequate spectrum opportunities for redundant transmissions. First, we explore the relationship between the estimation performance and the transmission reliability, based on which a joint optimization of channel allocation and power control is then developed to guarantee the estimation performance and maximize the sum rate of the WSN. Second, we formulate the optimization into a mix-integer nonlinear programming problem, which is solved efficiently by decomposing it into the channel allocation and power control subproblems. Ultimately, simulation study demonstrates that the proposed strategy not only ensures the required state estimation performance, but also increases the sum rate of the WSN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call