Abstract

The aim of this study was to develop an adaptive state estimator armed with discontinuous learning laws for the catalytic ozonation system. A class of differential neural network served to estimate the uncertain section of the uncertain catalytic process. The learning laws used for adjusting the weights included in the neural network based estimator. A set of numerical simulations demonstrated the application of the DNN based state observer and showed the estimation of the non-measurable information in the catalytic ozonation system. The adaptive state estimator with discontinuous learning laws was also evaluated with experimental information. The comparison of suggested and asymptotically convergent DNN based observer demonstrated the superior estimation performance offered by the estimator introduced in this study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.