Abstract
We investigate an estimation strategy for multiple clock systems, which is in particular resilient against clock anomalies. The clock anomalies, including frequency or phase jumps, can potentially degrade the estimation performance for multiple clock systems. While the conventional Kalman filter is known as one of the powerful methods for the estimation problem of multiple clock systems, we will show that it is vulnerable to the effects of clock anomalies. In this paper, we overcome this issue by employing an alternative approach to the Kalman filter, which is based on solving the -norm optimization problem. The estimation method employs a multiple clock model that includes only phase states. Nevertheless, the approach is shown to have more resilience against clock anomalies than the Kalman filter, because the deviation of the state from the apriori estimate is evaluated based on the -norm instead of the -norm. Moreover, the approach is shown to be competitive with many reset algorithms, since it does neighter require special stability assumptions about the reference clock, nor require any threshold for detecting the anomalies. The usefulness of the proposed method is validated through several numerical examples using actual clock data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.