Abstract

Scaled-model helicopters are highly nonlinear, coupled, and unstable machines. They have fast response and controlling them is very complicated and need high degree of precision. In this paper, a detailed nonlinear model is derived. An optimal controller that is based upon state estimation is designed and implemented for each of the control inputs using a linearized model around an unaccelerated hovering motion. The optimal linear controller was then applied to the nonlinear model. In addition, input/output measurements of the nonlinear model were used to train the Multi-Layer Neural Networks (MLNNs) of the Nonlinear AutoRegressive with Moving Average (NARMA-L2) controller. Then, NARMA-L2 was applied to the nonlinear model and the results were compared with both the classical, namely PI-D, and the optimal control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.