Abstract
This paper investigates the state estimation problem of power systems. A novel, fast and accurate state estimation algorithm is presented to solve this problem based on the one-dimensional denoising autoencoder and deep support vector machine (1D DA–DSVM). Besides, for further reducing the computation burden, a partitioning method is presented to divide the power system into several sub-networks and the proposed algorithm can be applied to each sub-network. A hybrid computing architecture of Central Processing Unit (CPU) and Graphics Processing Unit (GPU) is employed in the overall state estimation, in which the GPU is used to estimate each sub-network and the CPU is used to integrate all the calculation results and output the state estimate. Simulation results show that the proposed method can effectively improve the accuracy and computational efficiency of the state estimation of power systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Software Engineering and Knowledge Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.