Abstract

AbstractA strongly nonlinear eddy field is present in and around the subtropical countercurrent in the northern Philippine Sea (NPS). A regional implementation of the Massachusetts Institute of Technology General Circulation Model–Estimating the Circulation and Climate of the Ocean four-dimensional variational assimilation (MITgcm-ECCO 4DVAR) system is found to be able to produce a series of 2-month-long dynamically consistent optimized state estimates between April 2010 and April 2011 for the eddy-rich NPS region. The assimilation provides a stringent dynamical test of the model, showing that a free run of the model forced using adjusted controls remains consistent with the observations for 2 months. The 4DVAR iterative optimization reduced the total cost function for the observations and controls by 40%–50% from the reference solution, initialized using the Hybrid Coordinate Ocean Model 1/12° global daily analysis, achieving residuals approximately equal to the assumed uncertainties for the assimilated observations. The state estimates are assessed by comparing with assimilated and withheld observations and also by comparing 1-month model forecasts with future data. The state estimates and forecasts were more skillful than model persistence and the reference solutions. Finally, the continuous state estimates were used to detect and track the eddies, analyze their structure, and quantify their vertically integrated meridional heat and salt transports.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.