Abstract

The state equations and the pressure dependences of the lattice properties have been obtained for various polymorphous modifications of silicon and germanium using the Mie–Lennard-Jones pair interatomic potential and the Einstein crystal model. It is shown that the elastic-type interatomic potential gives the best results for the semiconductor phase and the plastic-type interatomic potential for the metalized phases whose potential well depth is significantly smaller. The pressure dependences of the lattice properties are calculated along isotherm 300 K and the jumps of the properties during the phase transition from the diamond structure to the β-Sn phase are evaluated for both silicon and germanium. The calculated results agree well with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call