Abstract

The state diagram of Deglet Nour dates was developed using freezing curve, glass transition line, and maximal-freeze-concentration condition. Freezing points and glass transition temperature were measured by differential scanning calorimetry (DSC) as a function of water content. Freezing points were fitted to the Clausius–Clapeyron equation adjusted with un-freezable water, and glass transition was fitted to the Gordon–Taylor model. Glass transition decreased with a decrease in solids content, confirming the plasticizing effect of water on date solids. Freezing point data indicated the temperature when ice formed and dates would be most stable in terms of its deterioration if it can be stored below its glass transition. Maximum-freeze-concentration conditions was found as X s ′ (characteristic solids content) = 0.78 g/g sample, with the characteristic temperature as T g ′ (characteristics glass transition) = −48 °C and T m ′ (characteristic end point of freezing) = −38.2 °C. These characteristics indicated that 0.22 g/g sample water in date was un-freezable (i.e. bound with solids or unable to form ice). The developed state diagram can be used in determining the stability of dates during storage as a function of temperature and moisture content. Moreover, it can be used to determine optimum drying and freezing conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call