Abstract

An animal's behavioral state is reflected in the dynamics of cortical population activity and its capacity to process sensory information. To better understand the relationship between behavioral states and information processing, mice are trained to detect varying amplitudes of whisker-deflection under two-photon calcium imaging. Layer 2/3 neurons in the vibrissal primary somatosensory cortex are imaged across different behavioral states, defined based on detection performance (low to high-state) and pupil diameter. The neurometric curve in each behavioral state mirrors the corresponding psychometric performance, with calcium signals predictive of the animal's choice. High behavioral states are associated with lower network synchrony, extending over shorter cortical distances. The decrease in correlation across neurons in high state results in enhanced information transmission capacity at the population level. The observed state-dependent changes suggest that the coding regime within the first stage of cortical processing may underlie adaptive routing of relevant information through the sensorimotor system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.