Abstract
Oxygen isotopes in sediments reflect Earth’s past temperature, revealing a cooling over the Cenozoic punctuated by multimillenial thermal extreme events. The magnitude of these extremes and their dependency on baseline climate state is not clearly understood. Here we use global records of deep sea foraminiferal δ18O as a proxy for atmospheric temperature over the Cenezoic and investigate how closely the generalised extreme value distribution matches δ18O block maxima. We find that the distribution of these extremes is captured well by the generalized extreme value distribution. In addition, the distribution of extremes’ shape changes with baseline temperature such that large thermal extremes are more likely in warmer climates. We therefore suggest that anthropogenic warming has the potential to return the baseline climate state to one where large thermal extremes are more likely.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.