Abstract

The semiclassical Bohr-Sommerfeld quantization condition is used to derive an approximate analytical expression for the state density of the hydrogen atom in a dense plasma. An ion-sphere model with an infinitely high potential wall is assumed. The expression leads to a universal curve that spans all values of the electron density. The curve is continuous and smooth over the entire energy range, starting from the hydrogenic state density for low-lying bound states and approaching the plane-wave state density in the high-energy limit of the continuum. The number of bound states is approximately proportional to the inverse of the square root of the electron density. Integration of the state density over the Boltzmann distribution of the electronic energy results in an ionization equilibrium relation, leading to modified Saha's equation. The correction factor for this modified equation is a function of both the electron temperature and the electron density, and is expressed as a universal function of the ion coupling parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.