Abstract
Transferring information from observations of a dynamical system to estimate the fixed parameters and unobserved states of a system model can be formulated as the evaluation of a discrete time path integral in model state space. The observations serve as a guiding potential working with the dynamical rules of the model to direct system orbits in state space. The path integral representation permits direct numerical evaluation of the conditional mean path through the state space as well as conditional moments about this mean. Using a Monte Carlo method for selecting paths through state space we show how these moments can be evaluated and demonstrate in an interesting model system the explicit influence of the role of transfer of information from the observations. We address the question of how many observations are required to estimate the unobserved state variables, and we examine the assumptions of Gaussianity of the underlying conditional probability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Quarterly Journal of the Royal Meteorological Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.