Abstract

In status update systems, multiple features carried by the status updating process require pursuit of objectives beyond timeliness measured by the age of information of updates. We consider such a problem where the transmitter sends status update messages through a noiseless binary energy harvesting channel that is equivalent to a timing channel. The transmitter aims to amplify or mask the energy state information that is carried in the updating process. The receiver extracts encoded information, infers the energy state sequence while maintaining timeliness of status updates. Consequently, the timings of the updates must be designed to control the message rate, the energy state uncertainty, and the age of information. We investigate this three-way trade-off between the achievable rate, the reduction in energy arrival state uncertainty, and the age of information, for zero and infinite battery cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.