Abstract

We consider state-aggregation schemes for Markov chains from an information-theoretic perspective. Specifically, we consider aggregating the states of a Markov chain such that the mutual information of the aggregated states separated by T time steps is maximized. We show that for T=1 this recovers the maximum-likelihood estimator of the degree-corrected stochastic block model as a particular case, which enables us to explain certain features of the likelihood landscape of this generative network model from a dynamical lens. We further highlight how we can uncover coherent, long-range dynamical modules for which considering a timescale T≫1 is essential. We demonstrate our results using synthetic flows and real-world ocean currents, where we are able to recover the fundamental features of the surface currents of the oceans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call