Abstract

Type 2 immunity in the lung is promoted through the release of innate cytokines, including TSLP, from lung structural cells. These cytokines drive Type 2 immunity in part through upregulation of OX40L on dendritic cells (DCs). DCs expressing OX40L are potent inducers of Th2 differentiation. We have shown previously that STAT6 inhibitory peptide (STAT6-IP), a cell penetrating peptide designed to inhibit the STAT6 transcription factor, reduces the induction of Th2 adaptive immunity in murine models of respiratory syncytial virus infection. Here we show that intranasal administration of STAT6-IP at the time of antigen priming with ovalbumin (OVA), in conjunction with the Nod2 agonist, MDP, reduced frequencies of CD11b+ lung DCs expressing OX40L. Consistent with these reductions, fewer activated DCs were localized to the lung draining lymph nodes in STAT6-IP-treated mice. Upon OVA challenge four weeks later, mice treated with STAT6-IP at the time of OVA/MDP priming did not develop airway hyperresponsiveness (AHR) and had reduced influx of eosinophils into the airways, mucus production, and serum OVA-specific IgE levels. Our findings provide evidence that the long-lasting inhibitory effects of STAT6-IP are due in part to inhibition of DC responses that drive maladaptive Th2 adaptive immunity and allergic airways disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.