Abstract

Heparin-binding EGF-like growth factor (HB-EGF) is a potent growth factor involved in wound healing and tumorigenesis. Despite the sequence similarity between HB-EGF and EGF, HB-EGF induces cellular proliferation and migration more potently than EGF. However, the differential regulation by HB-EGF and EGF has not been thoroughly elucidated. In this study, we compared signaling pathways activated by HB-EGF and EGF to understand the details of the molecular mechanism of the high potency induced by HB-EGF. HB-EGF specifically induced the phosphorylation of EGFR-Y1045 and activated Stat5, which is responsible for promoting cell proliferation, and migration. The competition of phosphorylated EGFR-Y1045 inhibited Stat5 activation and consequently lowered the effect of HB-EGF on cell proliferation, suggesting that the phosphorylation of EGFR-Y1045 is essential for the activation of Stat5. The phosphorylation of EGFR-Y1045 and Stat5 induced by HB-EGF was prevented by sequestering the heparin-binding domain, suggesting that the heparin-binding domain is critical for HB-EGF-mediated signaling and cellular responses. In conclusion, the heparin-binding domain of HB-EGF was responsible for EGFR-mediated Stat5 activation, resulting in a more potent cellular proliferation, and migration than that mediated by EGF. This molecular mechanism is useful for understanding ligand-specific EGFR signaling and developing biomedicines for wound healing or cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call