Abstract

Reactive oxygen species (ROS) have been implicated in various types of CNS damage, including stroke. We used a cultured astrocyte model to explore mechanisms of survival of CNS cells following ROS damage. We found that pretreatment with leukemia inhibitory factor (LIF) preserves astrocytes exposed to toxic levels of t-BHP by inhibiting an increase in intracellular ROS following t-BHP treatment. Astrocytes lacking functional Stat3 did not benefit from the pro-survival or antioxidant effects of LIF. Inhibition of mitochondrial uncoupling protein 2 (UCP2) using a chemical inhibitor or siRNA abrogates the prosurvival effects of LIF, indicating a critical role for UCP2 in modulation of mitochondrial ROS production in survival following ROS exposure. LIF treatment of astrocytes results in increased UCP2 mRNA that is accompanied by an increase in Stat3 binding to the UCP2 promoter region. Although treatment with LIF alone did not increase UCP2 protein, a combination of LIF treatment and ROS stress led to increased UCP2 protein levels. We conclude that LIF protects astrocytes from ROS-induced death by increasing UCP2 mRNA, allowing cells to respond to ROS stress by rapidly producing UCP2 protein that ultimately decreases endogenous mitochondrial ROS production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.