Abstract

Hepatitis C virus (HCV) infection is a leading cause a of chronic liver disease worldwide. The main therapeutic regimen is the combination of interferon α (IFN) and the nucleoside analog, Ribavirin. IFN initiates an intracellular antiviral state by the JAK-STAT signaling pathway, including a presumed role for STAT1 and STAT2. We have previously shown that the STAT3 activation occurs during IFN treatment of human hepatoma cells, suggesting that the STAT3-mediated pathway is relevant to IFN-induced antiviral activity. In this study, we investigate the role of activated STAT3 in the induction of anti-HCV activity in human hepatoma cells. We demonstrate that the STAT3 activation is involved in efficient IFN-induced anti-HCV activity. Using an inducible, cytokine-independent, STAT3 activation system, in which the entire coding region of STAT3 is fused with the ligand-binding domain of the estrogen receptor, we demonstrate that: activated STAT3 is tightly regulated in a stably transfected cell line by an estrogen analog, 4-HT; activated STAT3 initiates efficient anti-HCV activity in a HCV subgenomic replicon cell line; and activation of STAT3 is associated with the induction of a potential antiviral gene, 1-8U. In addition, we show that the cytokine IL-6, a potent STAT3 activator, inhibits HCV subgenomic RNA replication through STAT3 activation and ERK pathway. These results strongly suggest that STAT3 activation is capable of initiating intracellular antiviral pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.