Abstract

Chronic inflammation is a major driving factor for the development of colitis-associated cancer (CAC). It is extensively acknowledged that patients who have long-standing inflammation bowel disease are at high risk for developing CAC. However, the metabolic alteration by which chronic intestinal inflammation promotes colorectal cancer is unclear. In the present study, we constructed dextran sulfate sodium (DSS)-induced colitis mouse model to uncover possible alterations in the metabolism indexes. Interestingly, after DSS diet administration, the expression of metabolism indexes and c-Myc increased. Moreover, in vitro, we treated cells with IL-6 to simulate inflammatory microenvironment and found that glucose uptake, lactate production, and lactate dehydrogenase activity increased dramatically, mirroring what were observed in vivo. In addition, the associative inhibition of STAT3 and c-Myc could significantly block the expression of metabolic enzymes. With the inhibition of STAT3/c-Myc signaling, meanwhile, the upregulation of both cell glucose uptake and lactate production by IL-6 pretreatment was reduced simultaneously. Thus, our study indicates that inflammation could induce metabolic disorder by promoting STAT3 signaling and c-Myc activity. Collectively, we find that metabolic disruptions triggered by inflammatory signaling are associated with tumorigenesis via the STAT3/c-Myc axis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.