Abstract

BackgroundChronic nephrosis (CN) is an aging-related disease with high mortality. Signal transduction and transcriptional activator 1 (STAT1) protein promotes senescence in human glomerular mesangial cells (HMCs), but whether it affects the progression of adriamycin (ADR)-induced CN in vivo remains unclear.MethodsWe established an ADR-induced CN mouse model that was completed in wild-type (wt) mice by a single intravenous injection of 10 mg/kg ADR for 2 or 4 weeks. Clinical indexes in each group were determined. Hematoxylin and eosin staining (H&E) was employed to determine renal histopathological damage, SA-β-gal staining was used to evaluate cell senescence phenotype. TUNEL and immunohistochemistry (IHC) staining were used to detect renal apoptosis. Protein levels of Bcl-2, Bax, STAT1, p53 and p21 were measured by Western Blot.ResultsSTAT1 intervention ameliorated renal function. H&E staining indicated that STAT1-deficient (stat1−/−) improved the renal tubular injury, and stat1−/− obviously inhibited the apoptosis and Caspase-3+ number in kidney tissues. Besides, stat1−/− decreased proteinuria, and the levels of urea nitrogen and creatinine as well as that of reactive oxygen species induced by ADR. Also, stat1−/− resulted in the reduced expression of p53 and p21.ConclusionsOur current study strongly demonstrated the involvement of the STAT1-p53-p21 axis in the regulation of CN and is a potential target for the nephrosis treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call