Abstract

A group of transcription factors, termed signal transducers and activators of transcription (STATs), appears to orchestrate the downstream events propagated by cytokine/growth factor interactions with their cognate receptors. Similarly, cytoplasmic Janus kinases (JAKs) seem to play a critical role in diverse signal transduction pathways that govern cellular survival, proliferation, differentiation and apoptosis. In this work, we analysed the effects of the Salmonella enterica serovar Typhimurium porins on signaling by the JAK/STAT pathway and IL-6 release in U937 cells. Porins and LPS of membrane from Gram-negative bacteria are factors implicated in septic shock. In our assays porins induce interleukin-6 (IL-6) release (110 ± 2.6 pg/ml) 24 h after stimulation and STAT1/STAT3 tyrosine (Tyr701/Tyr705) and serine (Ser727) phosphorylation after 15 min. By using several selective inhibitors we demonstrate that porins modulate the activation of STAT1/STAT3 through mitogen activated protein kinases (MAPKs) and not JAKs. Furthermore, we demonstrated that STAT1 and STAT3 are not involved in the modulation of IL-6 release in U937 cells stimulated with porins. Inhibition of tyrosine/serine phosphorylation mediated by MAPKs of STAT1 and STAT3 decrease the IL-6 secretion following porin stimulation. Therefore, suggesting a key role of this pathway in phosphorylation of Ser 727 in STAT1 and STAT3. These results are confirmed by porin or LPS-induced nuclear translocation of STAT1 and STAT3 in U937 cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.