Abstract

Batteryless sensors promise a sustainable future for sensing, but they face significant challenges when storing and using environmental energy. Incoming energy can fluctuate unpredictably between periods of scarcity and abundance, and device performance depends on both incoming energy and how much a device can store. Existing batteryless devices have used fixed or run-time selectable front-end capacitor banks to meet the energy needs of different tasks. Neither approach adapts well to rapidly changing energy harvesting conditions, nor does it allow devices to store excess energy during times of abundance without sacrificing performance. This article presents Stash, a hardware back-end energy storage technique that allows batteryless devices to charge quickly and store excess energy when it is abundant, extending their operating time and carrying out additional tasks without compromising the main ones. Stash performs like a small capacitor device when small capacitors excel and like a large capacitor device when large capacitors excel, with no additional software complexity and negligible power overhead. We evaluate Stash using two applications—temperature sensing and wearable activity monitoring—under both synthetic solar energy and recorded solar and thermal traces from various human activities. Our results show that Stash increased sensor coverage by up to 15% under variable energy-harvesting conditions when compared to competitor configurations that used fixed small, large, and reconfigurable front-end energy storage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call