Abstract
Spatial transcriptomics technologies have been widely applied to decode cellular distribution by resolving gene expression profiles in tissue. However, sequencing techniques still limit the ability to create a fine-resolved spatial cell-type map. To this end, we develop a novel deep-learning-based approach, STASCAN, to predict the spatial cellular distribution of captured or uncharted areas where only histology images are available by cell feature learning integrating gene expression profiles and histology images. STASCAN is successfully applied across diverse datasets from different spatial transcriptomics technologies and displays significant advantages in deciphering higher-resolution cellular distribution and resolving enhanced organizational structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.