Abstract

Under repeated overrollings, the elastohydrodynamic lubrication (EHL) film thickness can be much less than the fully flooded value due to the ejection of the lubricant from the track. The ejection of the lubricant is caused by the pressure flow in the inlet, and under conditions of negligible reflow, the reduction rate is predicted by the numerical analysis with a uniform inlet film thickness. However, the degree of starvation is determined by the balance of the ejection and reflow. In the previous papers for circular contacts, the reflow is taken into account using a nonuniform inlet film thickness obtained based on the Coyne–Elrod boundary condition. In this paper, the model for circular contacts is extended to elliptical contacts, which are of more practical importance in rolling bearings. The model is verified for the inlet distance and the film thickness using a roller on disk optical test device. Numerical results are fitted to an inlet distance formula, which is a function of the initial film thickness, the fully flooded central film thickness, the capillary number, and the ellipticity ratio. The inlet distance formula can be applied to the Hamrock–Dowson formulas for the starved film thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call