Abstract

Exposure to adverse nutritional and metabolic environments during critical periods of development can exert long-lasting effects on health outcomes of an individual and its descendants. Although such metabolic programming has been observed in multiple species and in response to distinct nutritional stressors, conclusive insights into signaling pathways and mechanisms responsible for initiating, mediating, and manifesting changes to metabolism and behavior across generations remain scarce. By using a starvation paradigm in Caenorhabditis elegans, we show that starvation-induced changes in dauer formation-16/forkhead box transcription factor class O (DAF-16/FoxO) activity, the main downstream target of insulin/insulin-like growth factor 1 (IGF-1) receptor signaling, are responsible for metabolic programming phenotypes. Tissue-specific depletion of DAF-16/FoxO during distinct developmental time points demonstrates that DAF-16/FoxO acts in somatic tissues, but not directly in the germline, to both initiate and manifest metabolic programming. In conclusion, our study deciphers multifaceted and critical roles of highly conserved insulin/IGF-1 receptor signaling in determining health outcomes and behavior across generations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.