Abstract
The startup performance is crucial to the high-efficient operation of the sustainable power generation system. Current literature usually focuses on catalysts and startup strategy to improve startup performance of the proton exchange membrane fuel cell, which ignores the gas foil bearings-rotor system that directly affects startup response. Therefore, in this paper, the effects of bump foil structure, coating, and nominal clearance on the startup response of the bearings-rotor system are first investigated experimentally. Multi-objectives optimization mathematical model considering simultaneously lower power consumption, takeoff speed, and vibration is presented based on grey relational analysis. The optimal bearings-rotor system with radial trisection bump foil, coating MoS2, and nominal clearance of 50 μm is identified. Compared to average values, the power consumption of the optimal system is diminished by 27.2% while the takeoff speed and nonlinear vibration are reduced by 16.2% and 47.3%, respectively. These findings can be used to improve energy efficiency and startup performance for fuel cells. The systematic methodology proposed in this study can be extended to other investigations about the startup.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.