Abstract

As a novel electronic cooling device, pulsating heat pipes (PHPs) have been received attention in recent years. However, literature survey shows that no studies were carried out on the start-up and steady thermal oscillation of the PHPs. In the present paper, the copper capillary tube was being bended to form the snake-shaped PHP. Heating power was applied on the heating section, and transferred to the condensation section and dissipated to the environment by the pure natural convection. The inside diameter of the capillary tube is 2.0 mm and the working fluid is selected as FC-72. A high speed data acquisition system was used to detect the start-up and steady thermal oscillation of the PHP. Two types of the start-up process were observed: a sensible heat receiving start-up process accompanying an apparent temperature overshoot followed by the steady thermal oscillation at low heating power, and a smooth sensible heat receiving start-up process incorporating a smooth oscillation period at high heating power. For the steady thermal oscillation, also two types were found: the random thermal oscillation with a wide frequency range, indicating the random distribution of the vapor plug and liquid slug inside the capillary tube at low heating power, and the quasi periodic thermal oscillation with the same characteristic frequency for both heating section and condensation section, indicating the uniform distribution of the vapor plug and liquid slug inside the capillary tube at high heating power. The power spectral density (PSD) was used to analyze the thermal oscillation waves. The frequency corresponds to the time that a couple of adjacent vapor plug and liquid slug passing through a specific wall surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.