Abstract
A new hydroprocessed depolymerized cellulosic diesel (HDCD) fuel has been developed using a process which takes biomass feedstock (principally cellulosic wood) to produce a synthetic fuel that has nominally ½ cycloparaffins and ½ aromatic hydrocarbons in content. This HDCD fuel with a low cetane value (derived cetane number from the ignition quality tester, DCN = 27) was blended with naval distillate fuel (NATO symbol F-76) in various quantities and tested in order to determine how much HDCD could be blended before diesel engine operation becomes problematic. Blends of 20% HDCD (DCN = 45), 30%, 40% (DCN = 41), and 60% HDCD (DCN = 37) by volume were tested with conventional naval distillate fuel (DCN = 49). Engine start performance was evaluated with a conventional mechanically direct injected (DI) Yanmar engine and a Waukesha mechanical indirect injected (IDI) Cooperative Fuels Research (CFR) diesel engine and showed that engine start times increased steadily with increasing HDCD content. Longer start times with increasing HDCD content were the result of some engine cycles with poor combustion leading to a slower rate of engine acceleration toward rated speed. A repeating sequence of alternating cycles which combust followed by a noncombustion cycle was common during engine run-up. Additionally, steady-state engine testing was also performed using both engines. HDCD has a significantly higher bulk modulus than F76 due to its very high aromatic content, and the engines showed earlier start of injection (SOI) timing with increasing HDCD content for equivalent operating conditions. Additionally, due to the lower DCN, the higher HDCD blends showed moderately longer ignition delay (IGD) with moderately shorter overall burn durations. Thus, the midcombustion metric (CA50: 50% burn duration crank angle position) was only modestly affected with increasing HDCD content. Increasing HDCD content beyond 40% leads to significantly longer start times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.