Abstract

A laboratory-scale fluidized-bed reactor was inoculated with a syntrophically propionate-degrading co-culture. After 24 days of batch operation with propionate and acetate in the medium, the reactor was operated for 8 months with propionate as the sole substrate. The loading rate was 8.5 kg chemical oxygen demand/m3 ·day, yielding a maximal gas production of 4.5 l/l·day at a removal efficiency of 94–99%. The degradation was not inhibited by up to 85mm propionate in pulse experiments, but short-time changes in redox potential above — 300 mV led to a drop in the propionate degradation rate. While Methanocorpusculum sp. and Methanospirillum sp. adhered to the sand in the early phase of the start-up, the consortium in the mature biofilm consisted of Desulfobulbus sp., Methanothrix soehngenii and species of at least three different genera of hydrogenotrophic methanogens. A syntrophic relationship between the sulphate-reducing Desulfobulbus sp. and hydrogenotrophic and acetotrophic methanogens is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.