Abstract
The receptor for the inhibitory neurotransmitter glycine is a member of the ligand-gated ion channel receptor superfamily. Point mutations in the gene encoding the alpha 1 subunit of the glycine receptor-channel complex (GlyR) have recently been identified in pedigrees with the autosomal dominant neurological disorder, startle disease (hyperekplexia). These mutations result in the substitution of leucine or glutamine for arginine 271. This charged residue is located near the ion channel region and is predicted to affect chloride permeation through the GlyR. We found little evidence for this role from the anion/cation selectivity and lack of pronounced rectification of currents flowing through recombinant human alpha 1 subunit GlyRs containing the startle disease mutations. We reveal, however, that the startle disease mutations profoundly disrupt GlyR function by causing 230-410-fold decreases in the sensitivity of receptor currents activated by the agonist glycine. Additionally, we report corresponding 56- and 120-fold reductions in the apparent binding affinity (Ki) of glycine to the mutant GlyRs, but no change in the binding affinity of the competitive antagonist, strychnine. Thus, startle disease reduces the efficacy of glycinergic inhibitory neurotransmission by producing GlyRs with diminished agonist responsiveness. Our results show that startle disease mutations define a novel receptor activation site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.