Abstract
Self-propelled motion of micrometer-sized oil droplets in surfactant solution has drawn much attention as an example of nonlinear life-like dynamics under far-from-equilibrium conditions. The driving force of this motion is thought to be induced by Marangoni convection based on heterogeneity in the interfacial tension at the droplet surface. Here, to clarify the required conditions for the self-propelled motion of oil droplets, we have constructed a chemical system, where oil droplet motion is induced by the production of 1,2,3-triazole-containing surfactants through the Cu-catalyzed azide-alkyne cycloaddition reaction. From the results of the visualization and analysis of flow fields around the droplet, the motion of the droplets could be attributed to the formation of flow fields, which achieved sufficient strength caused by the in situ production of surfactants at the droplet surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.