Abstract

Random amplified polymorphic DNA (RAPD) markers have been used for numerous applications in plant molecular genetics research despite having disadvantages of poor reproducibility and not generally being associated with gene regions. A novel method for generating plant DNA markers was developed based on the short conserved region flanking the ATG start codon in plant genes. This method uses single 18-mer primers in single primer polymerase chain reaction (PCR) and an annealing temperature of 50°C. PCR amplicons are resolved using standard agarose gel electrophoresis. This method was validated in rice using a genetically diverse set of genotypes and a backcross population. Reproducibility was evaluated by using duplicate samples and conducting PCR on different days. Start codon targeted (SCoT) markers were generally reproducible but exceptions indicated that primer length and annealing temperature are not the sole factors determining reproducibility. SCoT marker PCR amplification profiles indicated dominant marker like RAPD markers. We propose that this method could be used in conjunction with these markers for applications such as genetic analysis, bulked segregant analysis, and quantitative trait loci mapping, especially in laboratories with a preference for agarose gel electrophoresis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.