Abstract

Recent numerical and experimental works have revealed a disorder-free many-body localization (MBL) in an interacting system subjecting to a linear potential, known as the Stark MBL. The conventional MBL, induced by disorder, has been widely studied by using quantum simulations based on superconducting circuits. Here, we consider the Stark MBL in two types of superconducting circuits, i.e., the 1D array of superconducting qubits, and the circuit where non-local interactions between qubits are mediated by a resonator bus. We calculate the entanglement entropy and participate entropy of the highly-excited eigenstates, and obtain the lower bound of the critical linear potential $\gamma_{c}$, using the finite-size scaling collapse. Moreover, we study the non-equilibrium properties of the Stark MBL. In particular, we observe an anomalous relaxation of the imbalance, dominated by the power-law decay $t^{-\xi}$. The exponent $\xi$ satisfies $\xi\propto|\gamma-\gamma_{c}|^{\nu}$ when $\gamma<\gamma_{c}$, and vanishes for $\gamma\geq \gamma_{c}$, which can be employed to estimate the $\gamma_{c}$. Our work indicates that superconducting circuits are a promising platform for investigating the critical properties of the Stark MBL transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.