Abstract

We demonstrate electrical control of the A-exciton interband transition in mono- and few-layer MoS2 crystals embedded into photocapacitor devices via the DC Stark effect. Electric field-dependent low-temperature photoluminescence spectroscopy reveals a significant tuneability of the A-exciton transition energy up to ∼ 16 meV from which we extract the mean DC exciton polarizability ⟨β̅N⟩ = (0.58 ± 0.25) × 10(-8) Dm V(-1). The exciton polarizability is shown to be layer-independent, indicating a strong localization of both electron and hole wave functions in each individual layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.