Abstract

The properties of graphene quantum dots can be manipulated via lateral electric fields. Treating electrons in such structures as confined massless Dirac fermions, we derive an analytical expression for the quadratic Stark shift valid for arbitrary angular momentum and quantum dot size. Moreover, we determine the perturbative regime, beyond which higher-order field effects are observed. The Dirac approach is validated by comparison with atomistic tight-binding simulations. Finally, we study the influence on the Stark effect of band gaps produced by, e.g., interaction with the substrate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call